Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.12.22280917

ABSTRACT

Multi-model and multi-team ensemble forecasts have become widely used to generate reliable short-term predictions of infectious disease spread. Notably, various public health agencies have used them to leverage academic disease modelling during the COVID-19 pandemic. However, ensemble forecasts are difficult to interpret and require extensive effort from numerous participating groups as well as a coordination team. In other fields, resource usage has been reduced by training simplified models that reproduce some of the observed behaviour of more complex models. Here we used observations of the behaviour of the European COVID-19 Forecast Hub ensemble combined with our own forecasting experience to identify a set of properties present in current ensemble forecasts. We then developed a parsimonious forecast model intending to mirror these properties. We assess forecasts generated from this model in real time over six months (the 15th of January 2022 to the 19th o July 2022) and for multiple European countries. We focused on forecasts of cases one to four weeks ahead and compared them to those by the European forecast hub ensemble. We find that the surrogate model behaves qualitatively similarly to the ensemble in many instances, though with increased uncertainty and poorer performance around periods of peak incidence (as measured by the Weighted Interval Score). The performance differences, however, seem to be partially due to a subset of time points, and the proposed model appears better probabilistically calibrated than the ensemble. We conclude that our simplified forecast model may have captured some of the dynamics of the hub ensemble, but more work is needed to understand the implicit epidemiological model that it represents.


Subject(s)
COVID-19 , Learning Disabilities , Communicable Diseases
2.
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.16.22276024

ABSTRACT

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. Results: Over 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks.


Subject(s)
COVID-19 , Death , Communicable Diseases
3.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2205.07090v1

ABSTRACT

Evaluating forecasts is essential in order to understand and improve forecasting and make forecasts useful to decision-makers. Much theoretical work has been done on the development of proper scoring rules and other scoring metrics that can help evaluate forecasts. In practice, however, conducting a forecast evaluation and comparison of different forecasters remains challenging. In this paper we introduce scoringutils, an R package that aims to greatly facilitate this process. It is especially geared towards comparing multiple forecasters, regardless of how forecasts were created, and visualising results. The package is able to handle missing forecasts and is the first R package to offer extensive support for forecasts represented through predictive quantiles, a format used by several collaborative ensemble forecasting efforts. The paper gives a short introduction to forecast evaluation, discusses the metrics implemented in scoringutils and gives guidance on when they are appropriate to use, and illustrates the application of the package using example data of forecasts for COVID-19 cases and deaths submitted to the European Forecast Hub between May and September 2021


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.18.21265046

ABSTRACT

Background: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. Methods: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all, and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the Weighted Interval Score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. Results: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. Conclusions: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.17.20174821

ABSTRACT

Since the emergence of SARS-CoV-2, governments around the World have implemented a combination of public health responses based on non-pharmaceutical interventions (NPIs), with significant social and economic consequences. Though most European countries have overcome the first epidemic wave, it remains of high priority to quantify the efficiency of different NPIs to inform preparedness for an impending second wave. In this study, combining capture-recapture methods with Bayesian inference in an age-structured mathematical model, we use a unique European dataset compiled by the European Centre for Disease Control (ECDC) to quantify the efficiency of 24 NPIs and their combinations (referred to as public health responses, PHR) in reducing SARS-Cov-2 transmission rates in 32 European countries. Of 166 unique PHR tested, we found that median decrease in viral transmission was 74%, which is enough to suppress the epidemic. PHR efficiency was positively associated with the number of NPIs implemented. We found that bans on mass gatherings had the largest effect among NPIs, followed by school closures, teleworking, and stay home orders. Partial implementation of most NPIs resulted in lower than average response efficiency. This first large-scale estimation of NPI and PHR efficiency against SARS-COV-2 transmission in Europe suggests that a combination of NPIs targeting different population groups should be favored to control future epidemic waves.

SELECTION OF CITATIONS
SEARCH DETAIL